Nghiên cứu Vật_lý_học

Phương pháp khoa học

Các nhà vật lý sử dụng các phương pháp khoa học để kiểm chứng một lý thuyết vật lý là đúng hay bác bỏ nó, sử dụng cách tiếp cận phương thức luận nhằm so sánh kết quả tiên đoán của lý thuyết với những giá trị thu được từ thí nghiệm hay quan trắc kiểm chứng nó; và do vậy hỗ trợ các nhà khoa học đi đến quyết định lý thuyết đó là đúng trong một phạm vi nhất định hay phải loại bỏ nó và đi tìm một lý thuyết khác lý giải các kết quả thực nghiệm.

Một định luật khoa học là một phát biểu súc tích hoặc thể hiện dưới công thức toán học liên hệ các đại lượng trong một nguyên lý cơ bản của lý thuyết, như định luật vạn vật hấp dẫn của Newton.[38]

Lý thuyết và thực nghiệm

Nhà du hành vũ trụTrái Đất trong trạng thái rơi tự do.Tia sét là hiện tượng phóng điện giữa hai vùng điện áp.

Các nhà vật lý hướng tới phát triển những mô hình toán học không những thỏa mãn kết quả của những thí nghiệm đã có mà còn tiên đoán thành công những kết quả mới hay những hiện tượng mới;[39] trong khi đó các nhà vật lý thực nghiệm không những thiết kế và lắp đặt những thí nghiệm kiểm chứng kết quả lý thuyết mà họ còn thực hiện những thí nghiệm mới cho kết quả không phù hợp với những lý thuyết hiện tại hoặc phát hiện ra hiện tượng hay hiệu ứng mới. Mặc dù lý thuyết và thực nghiệm được phát triển tách biệt nhau, chúng lại phụ thuộc mạnh vào lẫn nhau.[31] Sự tiến triển của vật lý học thường bước sang chương mới khi các nhà thực nghiệm phát hiện ra những hiện tượng mới, hoặc khi một lý thuyết mới tiên đoán kết quả mà các nhà thực nghiệm có thể thực hiện được các thí nghiệm kiểm chứng mang lại kết quả ủng hộ lý thuyết mới.[40]

Cũng có những nhà vật lý nghiên cứu trên cả hai phạm vi lý thuyết và thực nghiệm, nhà hiện tượng học, họ khai phá những kết quả thí nghiệm phức tạp và tìm cách liên hệ chúng với lý thuyết cơ sở.[41]

Về mặt lịch sử, vật lý lý thuyết có cảm hứng xuất phát từ triết học; như điện từ học được thống nhất từ quan điểm triết học.[42] Ngoài những hiện tượng đã biết trong vũ trụ, lĩnh vực vật lý lý thuyết cũng đặt ra những giả thuyết,[43] ví dụ giả thuyết vũ trụ song song, một vũ trụ có nhiều hơn 3 chiều không gian. Các nhà lý thuyết đưa ra những giả thuyết như vậy để hy vọng giải quyết được những vấn đề hóc búa trong vật lý học. Sau đó họ khám phá ra những hệ quả của giả thuyết và tìm kiếm những kết quả tiên đoán của nó mà có thể kiểm chứng được.

Vật lý thực nghiệm mang lại cơ sở và thông tin cũng như nhận lại từ ngành kĩ thuật và công nghệ. Các nhà vật lý thực nghiệm tham gia vào những nghiên cứu cơ bản nhằm thiết kế và thực hiện các thí nghiệm với các thiết bị tiên tiến như máy gia tốc hạt và laser, cũng như họ tham gia vào nghiên cứu ứng dụng trong công nghiệp, phát triển các công nghệ mới như chụp ảnh cộng hưởng từ (MRI) và thiết kế transistorvi mạch. Nhà vật lý lý thuyết Feynman từng nói rằng các nhà thực nghiệm thường thích làm thí nghiệm trên những phạm vi chưa được hiểu tốt bởi các nhà lý thuyết.[44]

Phạm vi và mục đích

Vật lý mô hình hóa thế giới tự nhiên bằng các đại lượng. Ví dụ ở đây, quỹ đạo của hạt trong cơ học được miêu tả bằng phép tính vi tích phân.

Vật lý học nghiên cứu nhiều hiện tượng, từ các hạt cơ bản (như quark, neutrinoelectron) cho đến những siêu đám thiên hà. Bao quát những hiện tượng và vật chất cơ bản này là những thứ cấu thành lên mọi sự vật và hiện tượng khác. Do vậy vật lý còn được gọi là "khoa học cơ bản".[36] Vật lý học có mục đích miêu tả càng nhiều hiện tượng khác nhau trong tự nhiên chỉ bằng một số nhỏ các quy luật đơn giản nhất. Do vậy, vật lý học nhằm mục đích liên hệ những thứ mà con người quan sát được với nguyên nhân gây ra chúng, và sau đó kết nối những nguyên nhân này với nhau.

Ví dụ, người Hy Lạp cổ đại đã biết rằng những vật như hổ phách khi chà vào lông thú có thể khiến hai vật hút nhau. Hiệu ứng này lần đầu tiên được nghiên cứu vào thế kỷ XVII, và gọi là điện học. Trong khi đó, từ lâu người ta cũng biết có những cục nam châm có thể hút thanh sắt và sử dụng làm la bàn, hay môn từ học. Do vậy, vật lý có mục đích hiểu được bản chất của hai hiện tượng theo một số nguyên nhân nào đó. Tuy vậy, những nghiên cứu sâu hơn trong thế kỷ XIX cho thấy hai lực này chỉ là những khía cạnh khác nhau của cùng một lực—lực điện từ. Quá trình "thống nhất" các lực vẫn còn tiếp tục cho đến ngày nay, và lực điện từ và lực hạt nhân yếu hiện nay được thống nhất thành tương tác điện yếu. Các nhà vật lý hy vọng cuối cùng sẽ tìm ra được lý thuyết thống nhất được cả bốn tương tác cơ bản trong tự nhiên (xem Nghiên cứu hiện tại ở dưới).

Lĩnh vực nghiên cứu

Những nghiên cứu hiện nay có thể chia thành một số lĩnh vực chính như vật lý vật chất ngưng tụ; vật lý nhiệt độ thấp, vật lý plasma; vật lý nguyên tử, phân tử, nano, quang học, laser, vật lý bán dẫn; vật lý hạt; vật lý thiên văn; địa vật lýlý sinh học... Một số nhà vật lý cũng tham gia nghiên cứu trong giáo dục vật lý học.

Từ thế kỷ XX, nhiều lĩnh vực vật lý mới xuất hiện và ngày càng chuyên biệt hóa hơn, và ngày nay đa số các nhà vật lý chỉ nghiên cứu trong lĩnh vực hẹp trong toàn sự nghiệp của họ. Những "nhà bác học" như Albert Einstein (1879–1955), Enrico Fermi (1901-1954), Lev Landau (1908–1968)..., mà họ nghiên cứu trong nhiều lĩnh vực của vật lý học, hiện nay là rất hiếm.[45]

Bảng các ngành chính của vật lý học, cùng với những nhánh nhỏ và lý thuyết nền tảng

Bảng dưới nêu một số ngành và ngành nhỏ của vật lý học, bên cạnh đó đưa ra một số lý thuyết chủ đạo và một vài khái niệm liên quan, và không hoàn toàn đủ các khái niệm cơ bản nêu ở đây.

NgànhPhân ngànhCác lý thuyết chínhKhái niệm
Vật lý thiên vănThiên văn học, Trắc lượng học thiên thể, Vũ trụ học, Vật lý hấp dẫn, Vật lý thiên văn năng lượng cao, Khoa học hành tinh, Vật lý plasma, Vật lý Mặt Trời, Vật lý Không gian, Nghiên cứu saoVụ Nổ Lớn, Lạm phát, Thuyết tương đối rộng, Định luật vạn vật hấp dẫn của Newton, Mô hình Lambda-CDM, Thủy từ họcLỗ đen, Bức xạ phông vi sóng vũ trụ, Dây vũ trụ, Vũ trụ học, Năng lượng tối, Vật chất tối, Thiên hà, Lực hấp dẫn, Sóng hấp dẫn, Kì dị hấp dẫn, Hành tinh, Hệ Mặt Trời, Sao, Siêu tân tinh, Vũ trụ, Tốc độ ánh sáng, Nguyên lý tương đương, Các định luật bảo toàn
Vật lý nguyên tử, phân tử, quang họcVật lý nguyên tử, Vật lý phân tử, Thiên văn nguyên tử và phân tử, Hóa lý, Quang học, PhotonicQuang học lượng tử, Hóa học lượng tử, Khoa học thông tin lượng tửPhoton, Nguyên tử, Phân tử, Nhiễu xạ, Giao thoa, Bức xạ điện từ, Laser, Phân cực, Quang phổ, Hiệu ứng Casimir, Vướng víu lượng tử, Mật mã lượng tử
Vật lý hạtVật lý hạt nhân, Vật lý thiên văn hạt nhân, Vật lý hạt phân tích các sự kiện va chạmMô hình chuẩn, Lý thuyết trường lượng tử, Điện động lực học lượng tử, Sắc động lực học lượng tử, Lý thuyết điện yếu, Lý thuyết trường hữu hiệu, Lý thuyết dàn trường, Lý thuyết gauge, Siêu đối xứng, Lý thuyết thống nhất lớn, Lý thuyết dây, Thuyết-M, Hấp dẫn lượng tử vòngTương tác cơ bản (hấp dẫn, điện từ, yếu, mạnh), Hạt cơ bản, Spin, Phản vật chất, Phá vỡ đối xứng tự phát, Dao động neutrino, Cơ chế Seesaw, Hấp dẫn lượng tử, Tái chuẩn hóa, Thuyết vạn vật, Năng lượng chân không, Biểu đồ Feynman
Vật lý vật chất ngưng tụVật lý chất rắn, Vật lý áp suất cao, Vật lý nhiệt độ thấp, Vật lý bề mặt, Vật lý cấp nano và lĩnh vực liên quan, Vật lý polymerThuyết BCS, Sóng Bloch, Lý thuyết phiếm hàm mật độ, Khí Fermi, Chất lỏng Fermi, Lý thuyết nhiều vật, Cơ học thống kêPha (khí, lỏng, rắn), Ngưng tụ Bose-Einstein, Dẫn điện, Phonon, Nam châm, Tự tổ chức, Chất bán dẫn, Chất siêu dẫn, Chất siêu chảy, Sắt từ,
Vật lý ứng dụngVật lý máy gia tốc, Âm học, Vật lý nông học, Lý sinh học, Hóa lý, Vật lý thông tin, Vật lý kỹ thuật, Thủy động lực học, Địa vật lý, Vật lý laser, Khoa học vật liệu, Vật lý y khoa, Công nghệ nano, Quang học, Quang điện học, Photonic, Điện mặt trời, Vật lý tính toán, Vật lý plasma, Thiết bị chất rắn, Hóa học lượng tử, Điện tử học lượng tử, Khoa học thông tin lượng tử, Động lực học xe cộ

Vật chất ngưng tụ

Dữ liệu phân bố vận tốc của các nguyên tử khí rubidium, xác nhận phát hiện ra một pha mới của vật chất, ngưng tụ Bose–Einstein.

Vật lý vật chất ngưng tụ là một ngành của vật lý học nghiên cứu các tính chất vật lý vĩ mô của vật chất.[46] Đặc biệt, nó xét đến các pha "ngưng tụ" xuất hiện bất cứ khi nào số hạt trong hệ là rất lớn và tương tác giữa chúng là mạnh.[47]

Những ví dụ quen thuộc nhất của pha ngưng tụ đó là chất rắnchất lỏng, chúng xuất hiện do lực điện từ liên kết giữa các nguyên tử.[48] Những pha ngưng tụ kỳ lạ bao gồm trạng thái siêu chảy[49]ngưng tụ Bose–Einstein[50] xuất hiện trong những hệ nguyên tử cụ thể ở nhiệt độ rất thấp gần 0 K, pha siêu dẫn thể hiện bởi các electron dẫn trong một số vật liệu,[51] và vật liệu sắt từphản sắt từ do tính chất spin trong mạng tinh thể nguyên tử.[52]

Vật lý vật chất ngưng tụ là một trong những ngành lớn nhất của vật lý học hiện nay.[53] Về mặt lịch sử, ngành này bắt đầu trưởng thành từ ngành vật lý trạng thái rắn, và hiện nay được các nhà khoa học coi là chủ đề chính của vật lý vật chất ngưng tụ.[54] Thuật ngữ vật lý vật chất ngưng tụ do Philip Anderson nêu ra khi ông đổi tên nhóm nghiên cứu của ông—trước đó là lý thuyết trạng thái rắn—vào năm 1967.[55] Năm 1978, Nhóm Vật lý Trạng thái Rắn của Hội Vật lý Mỹ đổi tên thành Nhóm Vật lý Vật chất Ngưng tụ.[54] Ngành này bao quát rất nhiều lĩnh vực bao gồm hóa học, khoa học vật liệu, công nghệ nanokỹ thuật.[47]

Vật lý nguyên tử, phân tử, và quang học

Đèn plasma.

Vật lý nguyên tử, phân tử, và quang học (AMO) nghiên cứu tương tác giữa vật chất–vật chất và ánh sáng–vật chất trên cấp độ nguyên tử và phân tử. Cả ba ngành này có sự trao đổi qua lại lẫn nhau, chúng có thể sử dụng phương pháp nghiên cứu tương tự nhau, giống nhau về mức năng lượng của hệ nghiên cứu. Cả ba ngành đều có cách tiếp cận bao gồm của vật lý cổ điển, bán cổ điển và lượng tử; các nhà vật lý có thể xét ba lĩnh vực này từ cấp độ vi mô (ngược với quan điểm vĩ mô).

Vật lý nguyên tử nghiên cứu các lớp vỏ electron trong nguyên tử. Những nghiên cứu hiện tại tập trung vào điều khiển lượng tử, làm lạnh và bẫy nguyên tử và ion, động lực học va chạm giữa những hệ nhiệt độ thấp và hiệu ứng tương quan eletron trên cấu trúc và động lực của hệ.[56] Vật lý nguyên tử cũng bị ảnh hưởng bởi kết quả nghiên cứu của vật lý hạt nhân (ví dụ như, cấu trúc siêu tinh tế[57]), nhưng các hiệu ứng liên hạt nhân như phân hạchtổng hợp hạt nhân được xem là thuộc về lĩnh vực vật lý năng lượng cao.

Vật lý phân tử tập trung vào các cấu trúc đa nguyên tử và những tương tác nội và ngoại phân tử với vật chất và ánh sáng. Vật lý quang học và ngành con quang học lượng tử khác với quang học cổ điển đó là nó không nghiên cứu cách điều khiển trường ánh sáng bằng phương pháp vĩ mô, thay vào đó là nghiên cứu các tính chất cơ bản của trường quang học và tương tác của chúng với vật chất trong thang vi mô.[58]

Vật lý năng lượng cao (vật lý hạt) và vật lý hạt nhân

Các sự kiện ghi tại máy dò CMS (ở trên) và ATLAS (ở dưới) ghi lại sự kiện va chạm hạt tại Máy gia tốc hạt lớn LHC, của một trong những khả năng xuất hiện boson Higgs.Mô hình chuẩn miêu tả các hạt và tương tác giữa chúng; những đường nối thể hiện các hạt có tương tác với nhau (hoặc với chính nó).

Vật lý hạt nghiên cứu các hạt cơ bản cấu tạo nên vật chấtnăng lượng, cũng như tương tác giữa chúng.[59] Thêm vào đó, các nhà vật lý hạt cùng phối hợp với các kỹ sư nhằm thiết kế và lắp đặt các máy gia tốc,[60] máy dò hạt,[61] và các chương trình phần mềm chạy trên siêu máy tính nhằm phân tích dữ liệu thu được.[62] Ngành này còn được gọi là "vật lý năng lượng cao" bởi vì nhiều hạt cơ bản không xuất hiện hay tồn tại "lâu" trong tự nhiên, và để nghiên cứu chúng các nhà vật lý phải bắn những hạt có năng lượng cao va chạm với nhau để sinh ra những hạt này.[63]

Hiện nay, các tương tác của những hạt cơ bản và trường được miêu tả khá hoàn chỉnh trong Mô hình chuẩn.[64] Trong mô hình này có 12 hạt cơ bản cấu thành lên thế giới vật chất (quarklepton), chúng tương tác với nhau thông qua các hạt truyền tương tác của ba loại tương tác mạnh, yếu, và điện từ.[65] Những tính chất của các tương này được miêu tả bởi các hạt trao đổi boson gauge (tương ứng các gluon, boson WZ, và photon).[66] Mô hình chuẩn cũng tiên đoán tồn tại hạt boson Higgs,[65] hạt có vai trò giải thích tại sao các hạt cơ bản lại có khối lượng thông qua "cơ chế phá vỡ đối xứng tự phát". Ngày 4 tháng 7 năm 2012, cơ quan CERN, phòng thí nghiệm châu Âu về vật lý hạt, thông báo phát hiện một hạt có những tính chất giống với boson Higgs, và dường như đây chính là hạt mà bấy lâu nay các nhà thực nghiệm vật lý hạt săn lùng.[67]

Vật lý hạt nhân là ngành nghiên cứu thành phần cấu tạo nên hạt nhân nguyên tử như proton, neutron và tương tác giữa các hạt nhân. Ứng dụng được biết đến nhiều nhất của ngành này đó là năng lượng hạt nhân sinh ra trong các lò phản ứng hạt nhân và công nghệ vũ khí nguyên tử, nhưng nó cũng xuất hiện trong những ngành khác như xạ trị ung thư trong y học hạt nhân, chụp cộng hưởng từ, cấy ghép ion trong khoa học vật liệu, phương pháp xác định niên đại bằng các nguyên tố phóng xạ trong địa chấtkhảo cổ học, nghiên cứu tạo ra các nguyên tố siêu urani và đảo bền những nguyên tố này.

Vật lý thiên văn

Bức ảnh chụp những thiên hà xa xôi trong quá khứ của vũ trụ, ảnh của Hubble.

Thiên văn họcthiên văn vật lý là một ngành ứng dụng các lý thuyết và phương pháp của vật lý học để nghiên cứu cấu trúc sao, tiến hóa sao, nguồn gốc và sự hình thành Hệ Mặt Trời, sự hình thành các hành tinh, thiên hà, cho đến những cấu trúc lớn trong vũ trụ. Nó cũng nghiên cứu lịch sử khởi đầu và kết thúc của vũ trụ...[68] Thiên văn vật lý là một ngành rộng, các nhà vật lý thiên văn phải áp dụng nhiều nhánh của vật lý học bao gồm cơ học thiên thể, điện từ học, cơ học thống kê, nhiệt động lực học, cơ học lượng tử, thuyết tương đối, vật lý hạt...

Thiên văn học ban đầu gồm những nghiên cứu quan sát qua kính thiên văn mặt đất với hạn chế trong độ phân giải và phạm vi hẹp của bước sóng quang học. Năm 1931 nhà thiên văn Karl Jansky phát hiện ra tín hiệu vô tuyến có nguồn gốc từ các thiên thể trên bầu trời và mở đầu cho một ngành mới là thiên văn vô tuyến.[69] Trong những thập niên gần đây, tiền phương của thiên văn học đã được mở rộng hơn khi con người bước vào kỷ nguyên thám hiểm vũ trụ với các công nghệ tiên tiến áp dụng từ những ngành khác của vật lý học cho phép xây dựng được những kính thiên văn không gian, tàu thăm dò liên hành tinh, và Trạm vũ trụ Quốc tế ISS. Không những thế, phạm vi bước sóng quan sát đã được thực hiện trên toàn miền bước sóng điện từ, vô tuyến, hồng ngoại, quang học, tử ngoại, tia X cho đến tia gamma. Thậm chí các nhà thiên văn vật lý thực nghiệm đang xây dựng những đài quan trắc neutrino, máy dò tia vũ trụ như AMS-02, hay thậm chí là cơ sở mặt đất cũng như thiết bị không gian thăm dò sóng hấp dẫn.[70]

Vật lý vũ trụ học nghiên cứu sự hình thành và tiến hóa của vũ trụ trên phạm vi lớn nhất của nó. Trong lĩnh vực này thuyết tương đối rộng của Albert Einstein đóng vai trò trung tâm của các lý thuyết vũ trụ học hiện đại. Đầu thế kỷ XX, các khám phá của Hubble cùng một số nhà khoa học khác cho thấy vũ trụ đang giãn nở, như được chỉ ra bằng định luật Hubble. Khám phá này cùng với phát hiện về bức xạ phông vi sóng vũ trụ là một trong những chứng cứ mạnh mẽ ủng hộ thuyết Vụ Nổ Lớn về sử khởi đầu của vũ trụ và loại bỏ lý thuyết trạng thái dừng của vũ trụ. Cuối thế kỷ XX, dựa trên quan sát các siêu tân tinh loại Ia các nhà vật lý thiên văn đã bất ngờ phát hiện ra vũ trụ không những đang giãn nở mà sự giãn nở đang tăng tốc, không như trước đây cho rằng sự giãn nở này phải chậm lại.[71]

Trạm vũ trụ quốc tế chụp từ tàu con thoi Discovery năm 2005 trong giai đoạn xây dựng.

Lý thuyết Big Bang trở lên thành công với những tiên đoán của sự sinh ra các nguyên tố nhẹ trong tổng hợp hạt nhân Vụ Nổ Lớn, về bức xạ tàn dư vi ba phát hiện năm 1964 và về cấu trúc lớn của vũ trụ quan sát được. Mô hình Vụ Nổ Lớn dựa trên hai trụ cột chính: thuyết tương đối tổng quát của Albert Einsteinnguyên lý vũ trụ học. Các nhà vũ trụ học hiện nay đưa ra mô hình ΛCDM, mô hình bao gồm Vụ Nổ Lớn như là điểm khởi đầu khai sinh vũ trụ - hay mô hình chuẩn của vũ trụ học. Mô hình miêu tả về sự tiến hóa và thành phần của vũ trụ cũng như trạng thái tối hậu của nó, với các lý thuyết phụ thêm như vũ trụ lạm phát ở thời điểm Big Bang; các thành phần năng lượng tối, vật chất tối và vật chất baryon.[71]

Nhiều khám phá mới xuất phát từ việc thu thập dữ liệu và phân tích chúng do những kính thiên văn không gian gửi về. Ví dụ dữ liệu từ Kính thiên văn không gian tia gamma Fermi quan sát trong nhiều năm mang lại cho các nhà vật lý thiên văn cái nhìn mới về hoạt động của vũ trụ và cho phép họ đánh giá những mô hình lý thuyết trong vật lý vũ trụ học.[72][73] Đặc biệt hơn, với những dự án kính thiên văn mặt đất và trong không gian mới khi đi vào hoạt động sẽ giúp các nhà khoa học vén được bức màn bí ẩn của vật chất tối và năng lượng tối trong thập niên tới.[74] Kính thiên văn Fermi cũng như máy đo phổ kế từ alpha AMS-02 sẽ tìm kiếm manh mối tồn tại của những hạt khối lượng lớn tương tác rất yếu với vật chất baryon, bên cạnh đó dữ liệu bổ sung từ ngành vật lý hạt ở các thí nghiệm trên các máy gia tốc như LHC và những máy dò khác sẽ mang lại cái nhìn bao quát cho các nhà vật lý từ cấp vi mô đến vĩ mô. Khi kính thiên văn không gian James Webb được phóng lên, nó sẽ nhìn xa hơn vào quá khứ của vũ trụ và các nhà khoa học sẽ tìm hiểu được tốt hơn lịch sử sơ khai của vũ trụ.[75]

Trong phạm vi Hệ Mặt Trời, các tàu thăm dò đã viếng thăm gần hết các hành tinh chính và đang hành trình đến những vùng rìa Hệ Mặt Trời và không gian liên sao. Một số tàu như Voyager 1 đã gửi về những dữ liệu quý giá về vùng nhật quyển và gió Mặt Trời ở những nơi xa nhất, giúp cho các nhà vật lý thiết lập mô hình chính xác hơn về cấu trúc hệ Mặt Trời ở phạm vi ngoài xa xôi.[76]

Tài liệu tham khảo

WikiPedia: Vật_lý_học http://musr.physics.ubc.ca/~jess/hr/skept/ http://press-archived.web.cern.ch/press-archived/P... http://www.hls-dhs-dss.ch/textes/f/F008284.php http://www.britannica.com/EBchecked/topic/458757 http://curiosity.discovery.com/question/classical-... http://books.google.com/?id=noRgWP0_UZ8C&printsec=... http://books.google.com/books?id=1KHuAAAAMAAJ http://books.google.com/books?id=JAxLVY96sqsC http://books.google.com/books?id=TRuP-BbS9xoC http://books.google.com/books?id=VkNBAQAAIAAJ